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ABSTRACT

Emotion analysis in text has drawn recent interests in the software
engineering (SE) community. Existing domain-independent tech-
niques for automated emotion/sentiment analysis perform poorly
when operated on SE text. Thus, a few SE domain-specific tools are
recently developed for detecting sentimental polarities (e.g., positiv-
ity, negativity). But, for capturing individual emotional states such
as excitation, stress, depression, and relaxation, there is only one
recent tool named DEVA, which uses a lexicon-based approach.

We have developed MarValous, the first Machine Learning based
tool for improved detection of the aforementioned emotional states
in software engineering text. We evaluate MarValous using a dataset
containing 5,122 comments collected from JIRA and Stack Overflow.
From a quantitative evaluation, MarValous is found to have sub-
stantially outperformed DEVA achieving more than 83% precision
and more than 79% recall.
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1 INTRODUCTION

Emotions greatly influence people’s decision making and collabo-
ration with others [21]. Thus, emotions affect people’s task quality,
productivity, creativity, group rapport and job satisfaction [33].
Software development activities being highly dependent on human
efforts and interactions, are more susceptible to emotions of the
individuals.

Recent studies [25, 28, 29, 32, 35, 39, 57] examined the impacts of
emotions on various performance factors (e.g., productivity, quality
and efficiency). Emotions are also captured and used as an important
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factor in prioritizing applications’ features to develop [18], in release
planning [40], in predicting bug severity [59], and in determining
the qualities of developers’ interactions in technical forums [16].
All these recent studies indicate emotion analysis as an emerging
area in software engineering (SE).

While approaches such as, interviews, surveys [57], and biomet-
ric measurements [37] are used to detect developers’ emotions, due
to the current distributed nature of Open Source Software (OSS)
development, detecting emotions from textual artifacts including
issue comments [15, 28, 29, 45, 48], email contents [24], and forum
posts [26, 41] is becoming more popular lately. For capturing emo-
tions in SE textual artifacts, initially, domain-independent sentiment
analysis tools (e.g., SentiStrength [53], NLTK [6], and Stanford
NLP [52]) were tried. It is found that those domain-independent tools
do not perform well when applied to SE text [15, 28, 34, 42, 48, 55]
mainly due to the variations in meanings of domain-specific techni-
cal terms [30, 33] and high proportion of noises (e.g., code snippets,
URLs, and API names) [10, 16, 30].

Recently, a few SE domain-specific tools [10, 14, 16, 30] are devel-
oped for detecting sentimental polarities (e.g., positivity, negativity)
only. Those tools are limited in capturing emotional states at the
necessary levels such as in capturing excitation, stress, depression,
and relaxation while it is important to capture these emotional
states [31, 42]. Islam and Zibran recently addressed this limitation
and developed DEVA [31], which, till date, is the only tool available
for detecting those four emotional states in SE texts. However, DEVA
is lexicon-based and such a technique is limited by the quality and
sizes of the underlying dictionaries in use [19, 21]. Arguably, a
dictionary-based approach can fail to capture the organization of
a text that contributes information relevant to the emotion of the
text writer [49].

In this paper, we present MarValous (Machine Learning Based
Emotion Detector in Valence-Arousal Space), a tool that we have
developed for automatic detection of individual emotional states
expressed in SE text. In particular, this paper makes the following
three contributions:

o We develop the first Machine Learning (ML) based tool for im-
proved detection of four emotional states excitation, stress, de-
pression, and relaxation expressed in software engineering texts.

e We evaluate nine supervised ML algorithms incorporated in our
tool to measure their applicabilities in detecting the aforemen-
tioned four emotional states.

e We create a unified dataset by combining two different bench-
mark datasets under a uniform format. This unified dataset can
be reused in training and testing similar tools as we have done
for our ML-based tool.


https://doi.org/10.1145/3297280.3297455
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Our MarValous tool exploits supervised ML techniques. It in-
cludes nine text preprocessing steps and seven feature extraction
modules. In empirical evaluations using the aforementioned unified
dataset, MarValous demonstrates 83.37% precision, 79.33% recall,
and 80.90% F-score. Both the MarValous tool and the dataset are
made publicly available [1].

2 EMOTIONAL MODEL

We use a two-dimensional model [27, 35] of emotions to clas-
sify texts in software engineering. Figure 1 presents the most
widely used emotion classification model in the two-dimensional
approach [23] proposed by Russell and Mehrabian [51]. As shown
in Figure 1, each dimension is bipolar where the valence dimension
ranges from negative valence (i.e., pleasant) to positive valence
(i.e., unpleasant) and the arousal dimension ranges from low to
high. Total 28 emotional states of a person can be determined by
combining different levels of valence and arousal in each of the
four quadrants marked as Q1, Q2, Q3, and Q4 in Figure 1.

High Arousal
Alarmed Aroused
Afraid A'l':grs;d Astonisl'_led
Annoyed Excited
Distressed Delighted
Fraustrated Happy
Negative Positive
Valence Miserable Pleased Valence
Sad Glad
Gloomy Serene
Depressed Contenet
Atease
Bored Satisfied
Relaxed
Droopy Calm
Tired Sleepy
Low Arousal

Figure 1: Two-dimensional emotion classification model.

Several studies [22, 27, 31] use simplified versions of the afore-
mentioned two-dimensional model of Russel and Mehrabian [51],
where each quadrant is represented by a unique emotional state.
For example, the quadrants Q1, Q2, Q3 and Q4 are represented by
emotions excitation, stress, depression, and relaxation respectively,
in the work of Islam and Zibran [31]. The four classes of emotions
are very distinct, as each state constitutes emotions, which are
quite different compared to the emotions of other states. Moreover,
the model is simple and easy to perceive. Therefore, the simplified
model of Islam and Zibran [31] is also adopted in our work.

3 MARVALOUS

We develop MarValous in Python and use scikit-learn [7] for su-
pervised learning algorithms. For improved classification perfor-
mances, MarValous consists of two major modules: (i) data pre-
processing and (ii) feature selection, which are described in the
following subsections.

3.1 Preprocessing

In the preprocessing phase, we sanitize the input text to get rid of
probable noises, which otherwise could mislead classification.
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URL and code snippet removal: Natural language texts (e.g.,
commit and issue comments) generated during software develop-
ment may often include noisy texts such as URL references and
code snippets, which do not convey any emotion of writers of
those texts. However, those URLs and code snippets may contain
emotional words that can easily mislead emotion detection ap-
proaches/tools [33]. Moreover, keeping those noises in texts will
increase the size of features’ vector for a ML classifier. We use a sim-
ple regular expression technique to identify and remove all URLs
and code snippets from our dataset. Such simple regular expression
technique is found to be effective [12] and also used for similar
purpose in other studies [10, 33] too.

Removal of numeric expressions: Similar to URLs and code
snippets, any numbers in texts do not indicate any emotion of the
writers and increase size of features’ vecrtor. Hence using a regular
expression, we identify and remove all numbers from our dataset.

Slang removal: Due to informal nature of communications
among developers, they frequently use slangs in their writings.
For example, in the comment, “Thanx a lot! Could you tell
me, how can I download OM 2.2? : the writer uses the
slang ‘Thanx’ instead of the English word ‘Thanks’. We replace
such slangs in texts with formal English words to reduce features’
vector size.

Stop word removal: Removing stop-words (such as articles,
prepositions, and conjunctions) to reduce number of features is a
common practice in ML based techniques. While predicting emo-
tions in texts, such removal of stop-words is highly expected as
those stop-words do not play any significant roles to express emo-
tions.

Table 1: A customized stop-words list

‘it; ‘itself] ‘this; ‘that, ‘these, ‘those; ‘is; ‘are, ‘was, ‘were, ‘be;
‘been, ‘being, ‘have, ‘has, ‘had, ‘having, ‘do, ‘does, ‘did, ‘doing,
‘a,) ‘an; ‘the, ‘and, ‘if, ‘or; ‘as, ‘until, ‘while,; ‘of; ‘at, ‘by, ‘for,
‘between, ‘into, ‘through, ‘during, ‘to, ‘from, ‘in, ‘out, ‘on, ‘off;
‘then, ‘once, ‘here, ‘there, ‘all, ‘any, ‘both, ‘each, ‘few, ‘more,
‘other, ‘some, ‘such; ‘than, ‘too, ‘s, ‘t, ‘can, ‘will, ‘don,” ‘should’

Although popular natural language processing tools (e.g., Stanford
CoreNLP [9] and NLTK [6]) provide lists of stop-words, we use a cus-
tomized stop-word list presented in Table 1. As the popular tools’
provided stop-words list includes personal pronouns (e.g., ‘he’, ‘she’,
and ‘my’), temporal terms (e.g., now), booster words (e.g., very) and
few others terms that are used for negations (e.g., ‘no’, ‘not’) and
asking questions (e.g., ‘why’, ‘what’), which play important roles
in expressing emotions [30, 31, 53]. Thus, those types of terms are
removed from stop-words collection to prepare our customized list.

Name replacement: Developers typically mention their col-
leagues’ names in texts immediately after salutation words such as
‘Dear’, ‘Hi’, ‘Hello’, ‘Hellow’ or after the character ‘@’ [30], which
do not convey any emotion rather increase size of features’ vec-
tor. Hence, all words that start after the words ‘Dear’, ‘Hi’, ‘Hello’,
‘Hellow’ and the symbol ‘@’ are replaced by the single word ‘User-
Name’.

Software-specific named entity replacement. Similar to col-
leagues’ names, software-specific named entities do not express any



emotion in texts and increase size of features vector. Hence, we iden-
tify the named entities and replace those using the keyword ‘Name-
dEntity’. To identify those named entities, we use the gazetteer [60]
prepared for software engineering domain. The gazetteer includes
total 400,147 entries divided into five categories, which are pre-
sented in Table 2. However, all the entries in the API category are
detected and removed by the logic of detection of code snippet.

Table 2: Categories of Software-specific Name Entities
# of Entries

l Named-Entity Category

Programming language (e.g., Java, C) 419
Platform (e.g., x86, AMD64) 175
API (e.g., Java ArrayList, toString()) 396,968
Tool-library-framework (e.g., JProfiler, Firebug) 2,196
Software standard (e.g., HTTP, FTP) 389

Dealing with negations: Generally, a negation word (e.g., ‘no’,
‘never’ ) is used for reversing or weakening the meaning of the word
it qualifies [30]. Since ML based classifiers operate on unigrams
and bi-grams representations of sentences, those classifiers often
fail to identify negated opinions [10]. To overcome that problem,
an earlier ML based sentiment analysis tools [46] adopted a simple
approach by prepending ‘not’ with the succeeding words that are
found after a negation word.

However, negations only affect verbs, adjectives, and adverbs
but do not alter nouns, determiners, articles, and particles [10].
Thus, we modify verbs, adjectives, and adverbs (instead of all the
words) by prepending ‘not_’, which are found within the scope of a
negation word in a sentence. To determine scope of negations, we
use chunking or shallow parsing [10] to divide a text into syntacti-
cally correlated parts of words. The work of Ahmed et al. [10] also
follows the same procedure.

Word tokenizing and stemming: Among available popular
tokenizer tools e.g., NLTK, Stanford CoreNLP, SyntaxNet [3] and
spaCy [5], we use NLTK as it shows the best performance [44]
in software engineering domain to tokenize words in texts. After
tokenization, we apply word stemming [8] to convert each word
to its root. We apply Snowball Stemmer [8] as it is used in another
software engineering study [10].

Expansion of contractions: Contractions are shortened forms
of a group of words, which are commonly used in informal written
communications. When a contraction is written in English, the
omitted letters are replaced by an apostrophe. Some frequently
used contractions and their expanded forms include: aren’t — are
not, and 'm — I am and won’t — will not. Writing the same thing
in two different ways (i.e., using or not using contraction) increases
size of features vector.

Thus, such expansion of contractions reduces the number of
unique lexicons (i.e., feature vectors), which, in turns, helps to
improve ML based classifiers’ performances. We expand total 124
frequently used contractions [10] if they are found in texts.

3.2 TFeature Selection

For machine learning, we identify a set of features in text, which
we describe below along with the rationale why they can be useful
in emotion classification.
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n-gram: An n-gram is a contiguous sequence of n items from a
given piece of text. The items can be phonemes, syllables, letters,
words or base pairs and n can be any natural number. In our work,
an item refers to a word in a given text and n ranges from one to
two i.e., we use unigram (where n = 1) and bigram (where n = 2)
as features.

For example, if a given text consists of the words w; wy ws, then
unigram feature will contain each of the words i.e., w1, wp and
ws and bigram feature will contain pair of words i.e., w; wy and
wa w3. We compute TF-IDF (Term Frequency - Inverse Document
Frequency) [4] for each of the unigram and bigram features. The
n-gram method is language independent and works well in the case
of noisy-texts [36]. Thus, it suits very well due to informal and
noisy natures of software engineering texts.

Emoticons: In informal written communications emoticons are
frequently used to express different emotions of writers. Hence,
emoticons have been commonly used to classify emotions in several
studies [10, 16, 27, 31]. We use total 38 emoticons in this work and
categorize those in the four quadrants according to their emotions
as presented in Table 3 (see the first and third columns). This cate-
gorization of emoticons is used in other studies [31, 58] too. We use
a binary feature (e.g., hasEmoticon) that keeps record of existence
of emoticons in a given text.

Moreover, to reduce features’ vector size, we replace 38 emoti-
cons in texts with four keywords according to their emotions. For
example, if we find an emoticon, which expresses emotion excita-
tion, then that emoticon is replaced with the keyword ‘Excited’. All
such four keywords are mentioned in the second column of Table 3
with respect to their emotions.

Interjections: The interjections are special parts of speech (POS),
which are also frequently used to express emotional states [31]. As
presented in the fourth column of Table 3, we use total 37 inter-
jections that are categorized into four emotions according to their
meanings in an earlier work [31]. Similar to emoticons, we use an-
other binary feature (e.g., hasInterjection) that identifies presence
of interjections in a given text. Again, to reduce features’ vector
size, we replace the interjections with four keywords presented in
the second column of Table 3 (similar to replacement process of
emoticons) according to their emotions.

Exclamation marks: Writers often use exclamation mark when
they want to express their intense feelings [16, 27]. For example, the
comment, “I will fix it immediately!," expresses a high level
of stress of the writer. On the other hand, the comment, “Yonik,
Thanks and Congratulations! indicates a high level of excita-
tion. In both cases, the writers of the comments use exclamation
marks to put more emphasize on their feelings. Thus, we use a
binary feature (e.g., hasExclamation) that captures presence of ex-
clamation marks in texts.

Uppercase words: To put higher emphasize on emotional ex-
pressions, writers sometimes write few words using all upper-
case/capital letters [16, 31] (e.g., GOOD, AWESOME, and BAD).
For example, in the comment, “SORRY Oliver, this is really
my fault," the writer expresses a higher level of sadness by writ-
ing the word ‘Sorry’ using all capital letters. We identify if any
word written in all capital letters in a piece of text and record that
information to use as a binary feature (e.g., hasAllCapitalLetter-
sWord). In many cases, API names and code elements are written



Table 3: Emoticons and interjections expressing different emotions

Emotion [ Keyword [ Emoticon [ Interjection

Excitation | Excited 7,i?7>x, D, 1)), 01), @)-, =P~, ), "> | ‘Gee’, ‘Hurray’, ‘Ooh’, ‘Oool’, ‘Wee’, ‘Wow’, ‘Yal’, ‘Yeah’, ‘Yeehaw’
Aahl Aaah’ Areh ‘Augh. Bah’. Boo Bool Booh’ ‘Eek’. Fep’

Stress Stressed (X, 0, =3 1, (i, =P ‘ a, ; .aa,, rgh, Augh, Bah, Boo, Boo!, Booh’, Lek’, Lep,
Grr’, ‘Yikes

. e ) 0 ) ‘Duh’, ‘Doh’, ‘Eww’, ‘Gah’, ‘Humph’, ‘Harumph’, ‘Oops’, ‘Oww’,
Depression | Depressed | :(; :-$, :-&, 8-), --<, (3], =S, I), | ‘Ouch’, ‘Sheesh’, ‘Jeez’, “Yick’
Relaxation | Relaxed B-), >, P, 5),5), =D, ), -2, [-0<, /2) ‘Ahh’, ‘Phew’

in all capital letters, which are discarded at preprocessing phase
(see subsection 3.1).

Elongated words: Similar to uppercase word, writers use elon-
gated words (e.g., Goood, Hurraaaay) to express intense emotions
in informal written communications [16]. We identify existing of
such elongated words in texts and record that information to use as
a binary feature (e.g., hasElongatedWord). Similar to contractions,
elongated words also adversely contribute to increase the size of
features vector. For example, the elongated word ‘Goood’ will be
considered as a unique word/feature, although it is a deviated form
of the English word ‘Good’. To reduce size of features vector, we
correct the spellings of such identified elongated words found in
texts.

Use of +1 and —1 in sentences: It is a common practice of
developers to put +1 and —1 in comments while discussing technical
issues among them in Stack Overflow and JIRA. When a developer
likes or agrees on any issue with his colleague(s), then he puts +1
while commenting on that issue [2]. For example, in the comment
“+1, the new patch looks good, the writer uses +1 (at the
beginning) to express his positive disposition to a patch generated
by his colleague. Thus, +1 in a comment indicates positive emotion,
while —1 indicates the opposite. We identify presence of +1 and
—1 in a text and create two binary features: i) hasPlusOne and ii)
hasMinusOne.

3.3 Algorithm Selection

There are many supervised ML algorithms available [7] for classifi-
cation problems. Among those, we select Scikit-learn’s [7] imple-
mentations of following nine ML algorithms as those are popular
and frequently used in sentiment/emotion classification.

(a) Adaptive Boosting (AB) [27], (b) Decision Tree (DT) [13,
27], (c) Gradient Boosting Tree (GBT) [47], (d) K-nearest Neigh-
bors (KNN) [27], (e) Naive Bayes (NB) [27, 46], (f) Random Forest
(RF) [56], (g) Multilayer Perceptron (MLP) [11], (h) Support Vec-
tor Machine with Stochastic Gradient Descent (SGD) [13], and (i)
Linear Support Vector Machine (SVM) [16, 27].

4 EVALUATION

We use precision (9), recall (R), and F-score (J) to measure the
accuracy of emotion detection of MarValous for each of the five
emotional states (as described in Section 2). Given a set 7~ of texts,
precision (), recall (R), and F-score (d) for a particular emotional
state e is calculated as follows:

T0T ] g

j_2><g)><‘R
|71 |

p+R

s
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where e € {excitation, stress, depression, relaxation, neutral}, 7,
represents the set of texts expressing the emotional state e, and
7, denotes the set of texts for which MarValous identifies the
emotional state e.

4.1 Dataset

There is only one publicly available dataset where software engi-
neering texts are manually annotated by Islam and Zibran [31] with
four emotions excitation, stress, depression, and relaxation. Emotion-
wise number of comments in that dataset are mentioned in the
second column of Table 4.

Table 4: Number of comments in categories of emotions

Emotion # of comments annotated by Total
Islam and Novielli # of
Zibran [31] et al. [43] | Comments
Excitation 411 1,709 2,120
Stress 252 988 1,240
Depression 289 230 519
Relaxation 227 0 227
Neutral 616 400 1,016
‘ Overall total number of comments: 5,122

The number of comments are not adequate to train and test a
ML classifier [53]. Hence, we increase the number of comments
by leveraging the dataset created by Novielli et al. [43]. They re-
lease a dataset of 4,800 questions, answers, and comments collected
from Stack Overflow, which are manually annotated using six basic
emotions, namely love, joy, anger, sadness, fear, and surprise. Ac-
cording to emotion classification model in the two-dimensional
approach [23] (as seen in Figure 1) the emotions love and joy fall
in the first quadrant, emotions anger and fear fall in the second
quadrant and emotion sadness falls in the third quadrant. Hence,
we select those comments that are annotated with the emotions
love, joy, anger, fear and sadness and assigned those comments the
representative emotions of their respective quadrants in which they
belong.

In some cases, an expression of surprise can be positive, while
in other cases it can convey a negative sentiment/valence [30]. As
the polarities along the valence dimension are not defined for the
surprised comments in the dataset of Novielli et al., we exclude those
surprised comments to minimize ambiguity. Finally, we randomly
pick 400 neutral comments of the dataset. For each of the emotions,
we mention the number of comments collected from the dataset of
Novielli et al. in the third column of Table 4. The combined dataset
consists of 5,122 comments.



Table 5: Comparison of ML algorithms in classification of emotional states

Emotion | Metrics | AB DT | GBT | KNN | NB RF | MLP | SGD | SVM
[9) 80.91% | 86.82% | 90.12% | 82.31% | 50.92% | 80.67% | 89.62% | 85.88% | 89.65%
Excitation R 88.47% | 86.98% | 93.13% | 89.36% | 98.72% | 90.64% | 92.34% | 93.60% | 93.77%
4 84.48% | 86.88% | 91.59% | 85.68% | 67.13% | 85.31% | 90.96% | 89.28% | 91.65%
© 55.08% | 63.70% | 79.67% | 75.63% | 85.94% | 70.42% | 74.61% | 78.50% | 75.81%
Stress R 44.79% | 54.63% | 71.26% | 40.33% | 22.31% | 49.19% | 75.55% | 69.80% | 76.99%
4 48.81% | 58.64% | 75.10% | 52.39% | 35.26% | 57.83% | 74.96% | 73.44% | 76.32%
[9) 61.97% | 56.01% | 83.97% | 59.26% | 20.00% | 63.74% | 70.83% | 74.56% | 78.27%
Depression ‘R 25.26% | 51.25% | 63.66% | 56.52% | 00.37% | 42.91% | 62.25% | 62.32% | 60.73%
4 34.88% | 53.17% | 72.20% | 57.36% | 00.72% | 51.13% | 66.02% | 67.27% | 68.14%
9] 54.20% | 64.38% | 84.77% | 67.41% | 00.00% | 80.07% | 82.22% | 80.35% | 86.77%
Relaxation R 52.07% | 59.17% | 71.37% | 62.72% | 00.00% | 51.65% | 75.62% | 76.38% | 77.15%
4 52.46% | 61.22% | 77.04% | 64.48% | 00.00% | 62.21% | 78.51% | 77.29% | 81.29%
[9) 58.37% | 68.86% | 76.83% | 59.56% | 75.51% | 67.54% | 86.18% | 86.33% | 86.35%
Neutral R 77.45% | 84.06% | 88.94% | 84.96% | 50.21% | 91.61% | 82.09% | 84.38% | 87.99%
4 65.42% | 75.65% | 84.45% | 69.91% | 59.96% | 77.68% | 84.00% | 85.33% | 87.09%
Overall average [9) 62.10% | 67.95% | 83.07% | 68.83% | 46.47% | 72.49% | 80.69% | 81.12% | 83.37%
accuracy R 57.61% | 67.22% | 77.67% | 66.78% | 34.32% | 65.20% | 77.57% | 77.29% | 79.33%
4 57.21% | 67.11% | 80.08% | 65.96% | 32.61% | 66.83% | 78.89% | 78.52% | 80.90%
Table 6: Comparison of features in MarValous states are presented in the last three rows. The highest obtained
. 1] value of a metric in each row is boldfaced for better interpretation
Fmotion = ﬁfl?{t- 7 nEp oty n+o of the results. b
¢ | 89.65%| 88.03% | 87.81% | 88.42% | 88.17% In Table 5, we see SVM obtains the highest F-score values for
Excitation | R | 93.77% | 94.81%| 94.77% | 94.51% | 94.34% each of the emotional states except depression. For emotions de-
1 1 91.65%| 91.27% | 91.14% | 91.35% | 91.14% pression and relax, GBT and SVM obtain the best performances
o | 75.81%| 72.36% | 72.30% | 72.70% | 72.47% respectively, for all the metrics. For emotions excitation and stress,
Stress R 76.99%| 74.85% | 75.13% | 76.17% | 74.89% GBT shows the best results for metric precision, while NB and
1 176.32%| 73.41% | 73.62% | 74.31% | 73.52% SVM obtain the highest recall values for the particular emotions
9 | 78.27%| 69.08% | 69.71% | 70.53% | 70.21% respectively. Although NB performs relatively better in detecting
Depression | R | 60.73%| 56.23% | 55.20% | 55.72% | 56.11% emotions excitation, stress and neutral, which have higher number
T | 68.14%| 61.85% | 61.32% | 62.14% | 61.94% of comments, it performs very low in detecting relaxation and de-
© | 86.77% | 88.10% | 88.18% | 88.05% | 88.96% pression that have lower number comments. On the other hand,
Relaxation | R | 77.15%| 73.79% | 76.26% | 76.66% | 75.65% for neutral comments, RF obtains the highest recall value, whereas,
T 181.29% | 7991% | 81.46% | 81.56% | 81.57% SVM obtains the highest precision value followed by SGD.
0 | 86.35% | 89.58% | 89.29%| 88.97% | 88.53% Notably, SGD and MLP algorithms show promising results, al-
Neutral R 87.99%| 82.37% | 82.17% | 83.15% | 83.88% though their obtained overall average accuracies’ values are lower
11 87.09%| 85.76% | 85.52% | 85.88% | 86.11% than the metrics’ values obtained by SVM and GBT algorithms.
SVM performs the best in terms of overall average precision, recall
Overall © | 83.37%| 81.43% | 81.46% | 81.73% | 81.67% :
and F-score (see last three rows of last column in Table 5) that
average R| 79.33%| 76.41% | 76.70% | 77.24% | 76.97% indicates the algorithm sh tead formances across all the
accuracy | J | 80.90%| 78.44% | 78.61% | 79.05% | 78.86% fncicates the a'go shows steady petro .
emotional states. Hence, among the nine ML algorithms, we select

4.2 Evaluation of ML Algorithms

Here we seek to identify which ML algorithm shows the best perfor-
mance on the dataset. We use 10-fold cross-validations to validate
each of the algorithms, where the dataset is randomly divided into
10 groups and each of the ten groups is used as test dataset once,
while the remaining nine groups are used to train the classifier.
For each of the ML algorithms, we run MarValous on the dataset
and compute averages of precisions, recalls, and f-measures for 10-
fold cross-validations for each of the emotional states. The computed
metrics’ values are presented in Table 5. For each ML algorithm, the
overall average precision, recall, and F-score across all the emotional

this ML algorithm as default for our MarValous tool and conduct
our subsequent analyses.

4.3 Evaluation of Features in MarValous

The selection and quality of the features representing each class
affect the accuracy and efficiency of classification of ML algo-
rithms [50]. Identifying and removing irrelevant and unnecessary
features increase learning accuracy and improve comprehensibility
of results. Toward that we measure importance of the seven features
of MarValous in classifying four emotional states of the comments
in our dataset.
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First, based on the similarities of the features we divide those
features into four disjoint sets: i) n ={unigram and bigram}, ii)
B ={emoticons and exclamatory mark}, iii) y={all capital letters, elon-
gated word and interjection} and iv) ={plus one and minus one}. Then,
for various combinations of those features’ sets, we run MarValous
on our dataset. The combinations of those features and computed
results for each of the combinations are presented in Table 6.

As seen in Table 6, in all the cases, precision, recall and F-score
values are always higher when MarValous is operated with all
features except in four cases. Those four exception cases include:
i) the highest recall value obtained using only n-gram feature for
comments belong to excitation emotion, ii) the best precision and
F-score values obtained using the combination of 1 and § features
for emotion relaxation, and iii) the highest precision value obtained
using the combination of n and f features for neutral comments.
However, those exception cases cannot prevent the combination
of all features to obtain the highest overall average accuracies (see
last three rows of third column in Table 6).

By observing the differences of metrics’ value presented in the
third and fourth columns of Table 6, we see n-gram (1) features
i.e., unigram and bigram contribute the most significant part of
the accuracies of our tool MarValous. Although other features’
contributions are not significant, those features play their roles
in increasing overall accuracies of our tool MarValous. As SVM
algorithm with all the seven features has showed the best perfor-
mance, we have released MarValous by setting SVM as its default
algorithm while enabling all those features in it.

4.4 Comparison with DEVA

We compare our tool’s accuracies with those of DEVA [31]. Until
the public release of our MarValous, DEVA is the only available SE
domain specific tool for the detection of the four emotional states
that our tool also detects. While DEVA uses a lexicon based approach,
our MarValous relies on ML techniques.

To ensure a fair comparison between the tools, we randomly
divide the dataset into two subsets: i) training set contains 70% (i.e.,
3,586) comments of the dataset and ii) test set contains remaining
30% (i.e., 1,536) comments. The training set is used to train our
ML based tool MarValous and the test set is used to compute and
compare performances of DEVA and MarValous.

We separately operate DEVA and MarValous to detect the emo-
tional states in each of the comments in the test set. Then, we
compute the precision (), recall (R), and F-score () for their de-
tections of each emotional states (i.e., excitation, stress, depression,
relaxation, and neutral) as presented in Table 7. The overall average
precision, recall, and F-score across all the emotional states are
presented in the bottom three rows.

We see in Table 7 that MarValous outperforms the baseline tool
DEVA in all cases by a large margin except for the recall values of
stressed and neutral comments and precision value of comments
belong to excitation emotion. MarValous maintains a proper balance
between precision and recall for each emotional state resulting in
higher F-score in each emotional state. Overall, on average, across
all the emotions, MarValous clearly outperforms the baseline, as
it has achieved 19.04% higher precision and 08.19% higher recall
values compared to DEVA.
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Table 7: Comparison between DEVA and MarValous
[ Emotions [ Metrics [ DEVA [ MarValous

© 91.26% 86.86%

Excitation R 78.07% 93.36%
E| 84.15% 89.99%

© 43.25% 79.82%

Stress R 70.32% 56.13%
E| 53.56% 65.91%

© 36.92% 90.00%

Depression R 55.81% 73.26%
E| 44.44% 80.77%

0 75.10% |  75.31%

Relaxation R 48.35% 76.08%
E| 58.82% 75.70%

© 74.41% 84.18%

Neutral R 93.38% 88.08%
E| 82.82% 86.08%

Overall 9] 64.19% 83.23%
average R 69.19% 77.38%
accuracy 4 64.76% 79.69%

Table 8: Contingency matrix of McNemar’s test

# of comments # of comments

misclassified noo = 146 | no; = 113 | misclassified by
by both 7, and 73, 7} but not by 7,

" # of comments “# of comments
misclassified by nio = 293 | ni; = 984 | correctly classified

7 but not by 73,
Here, 7, = DEVA and 7}, = MarValous

by both 7, and 7},

Statistical significance. We apply a non-parametric McNemar’s
test [20, 30] at significance level @ = 0.05 to verify the statistical
significance in the difference of the results obtained by the two tools,
DEVA and MarValous. As the non-parametric test does not require
normal distribution of data, this test suits well for our purpose.

We perform a McNemar’s test on a 2 X 2 contingency matrix
(Table 8) derived from the results obtained from the two tools. A
number/frequency in a cell is denoted as ny, where x and y denote
row and column numbers respectively of a cell in the contingency
table. According to the table, MarValous (7}) performs better than
DEVA (74) as nio > no1. The difference of performances is found to
be statistically significant with p-value = 2.69 x 107! where p < .
We, therefore, conclude that the observed superior performance of
our MarValous over DEVA is statistically significant.

5 LIMITATIONS AND THREATS TO VALIDITY

To have a large dataset, we combine two datasets of Islam and
Zibran [31] and Novielli et al. [43], which are created by following
two-dimensional and discrete emotional models respectively. While
those two emotional models different from each other, we map
categories of emotions from discrete emotional model to the two-
dimensional model (see Section 4.1), which can be questioned. To
validate our mapping process, we randomly pick 20 comments from
each category of emotions and manually verify the correctness of
mappings.



Although we combine two datasets to increase the size of the
used dataset, the number of comments is still low (total 5,122)
for training a ML-based classifier. Thus, the generalizability of
MarValous can be questioned. However, higher performances of
MarValous on combined dataset, which consists of comments col-
lected from two different data sources (JIRA issue comments and
Stack Overflow comments), give us confidence that it will perform
good enough on different types of software engineering textual
artifacts too. Moreover, the newly combined dataset is not per-
fectly balanced as the emotion relaxation consists of only 04.43% of
all comments. However, such imbalance in the dataset could not
adversely affect the performance of MarValous.

While there are many ML algorithms available, we have cho-
sen the nine selected algorithms based on their popularity in the
community. Moreover, in the selection of those algorithms, we en-
sure that the selection encompasses varieties of ML algorithms,
e.g., Generalized Linear Models (GLM), Support Vector Machine
(SVM), Stochastic Gradient Descent (SGD), Nearest Neighbors (NN),
ensemble methods and others. There are still scopes to examine
performances of other ML algorithms.

Overfitting can be a common threat to any ML based tool. To
make sure there is no such overfitting of MarValous accuracies,
we use ten-fold cross validations to measure accuracies of the tool.
Moreover, we verify the superior performance of MarValous over
DEVA using the 30% of the comments, which were never used at the
training phase. Such precautions should have limited the threats of
overfitting.

The lists of emoticons, interjections and slangs might not have
included all available such items. Missing of items from those lists
might have restricted the performance of MarValous. Keyword
based detection of APIs’ names in texts might not be 100% accurate
either. However, these limitations also apply to lexicon-based ap-
proaches (such as DEVA). We plan to minimize these limitations in
our future work.

6 RELATED WORK

Earlier research related to sentiment analysis in software engineer-
ing text mostly used three tools, SentiStrength [53], Stanford
NLP [9], and NLTK [6]. SentiStrength is the most frequently [30]
used tool among those three tools. All of the aforementioned three
tools were developed and trained to operate on general purpose
texts (e.g., movie and hotel reviews) and they did not perform well
enough when operated in a particular domain such as software
engineering [16, 33]. Sentiment analyses using these tools are mis-
leading mainly due to the variations in meanings of domain-specific
technical terms [30] and high amount of noises (e.g., code snippets,
URL and API names) [10, 16, 30].

Blaz and Becker [14] proposed three lexical based methods that
consists of a dictionary method, a template method, and a hybrid
method for sentiment analysis in job submission tickets related to
Information Technology (IT). Those three techniques were tested
on formally written texts generated in closed official environment
and may not perform well in dealing with informal and noisy
texts frequently used in software engineering artifacts such as
commit and code review comments [30]. SentiStrength-SE [30],
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Senti4SD [16] and SentiCR [10] are three recent sentiment analy-
sis tools especially designed by targeting software engineering text.
However, all the aforementioned tools can detect valence (aka senti-
ment) only and cannot other emotional states in more fine-grained
levels.

To detect emotions at deeper levels, Murgia et al. [38] constructed
a Machine Learning (ML) classifier to identify six emotions joy, love,
surprise, anger, sad, and fear in issue comments related to software
development. In another work, Calefato et al. [17] also developed
a ML based toolkit named EmoTxt to detect those six emotions
from technical posts in Stack Overflow. However, neither of these
techniques are capable of detecting the emotional states in the
well-established bi-directional emotional model that includes both
valence and arousal dimensions [31].

To address the above mentioned issue, Islam and Zibran [31]
developed a dictionary and rule-based tool DEVA to identify four
emotional states excitation, stress, depression/sadness, and relaxation
in the bi-directional emotional model. Our work is inspired by DEVA.
The lexical approach of DEVA is based on limited-size dictionaries
and a set of predefined rules. Thus, the performance of DEVA is
inherently limited by the quality and size of the dictionaries [21].
Moreover, DEVA will fail to correctly classify emotions when en-
countered certain textual structures and content, which are not
covered by the rules and dictionaries. To overcome such limita-
tions, in MarValous, we have used ML techniques and we have also
demonstrated that our ML approach performs substantially better
than the lexical approach of DEVA.

TensiStrength [54] is a tool released before DEVA, and it that
can detect stress and relaxation in texts, but cannot capture excitation
or depression. Unlike MarValous and DEVA, TensiStrength is not
particularly designed for any specific domain, and thus produce
inferior performance compared to DEVA in dealing with software
engineering texts [31]. Our MarValous substantially outperforms
DEVA as found from the quantitative comparison in this work.

7 CONCLUSION

In this paper, we have presented MarValous, which is the first Ma-
chine Learning (ML) based tool especially designed for software en-
gineering text to detect individual emotional states excitation, stress,
depression, relaxation and neutrality. By using nine preprocessing
steps and seven features, we have developed the tool MarValous
that consists of nine popular and effective supervised ML algorithms
for emotion/sentiment analysis.

For evaluating the ML algorithms in MarValous, we have com-
bined two existing manually annotated datasets that consists of
5,122 comments collected form JIRA and Stack overflow. From a
quantitative evaluation using this dataset, the Linear Support Vector
Machine (SVM) algorithm is found to exhibit the best performance
(overall average precision 83.37% and recall 79.33%) followed by
GBT. The algorithms SGD and MLPC have also showed promising
results.

Next, to find an optimal features’ set, we have evaluated various
combinations of the seven features of MarValous using the highest
performed SVM algorithm. We have found that the set of all the
seven features have achieved the best overall average accuracies



compared to the selected subsets of those features. As SVM algo-
rithm with all the seven features has showed the best performance,
we have released MarValous by setting SVM as its default algorithm
while enabling all those features in it.

We have also compared the performance of MarValous (with
default settings) against the state-of-the-art tool DEVA. From the
quantitative comparisons, MarValous is found to achieve 19.04%
higher precision and 08.19% higher recall compared to DEVA. A sta-
tistical test has confirmed the significant superiority of MarValous
over DEVA. The current release of MarValous and combined bench-
mark dataset are freely available [1] for public use.

Creating a larger dataset of comments annotated with four emo-
tional states remains within our immediate future work. We will
put efforts in minimizing the limitations of MarValous to improve
its performance. We will also conduct empirical studies of emo-
tions and their probable impacts in software engineering using our
MarValous.
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