
A Comparative Study on Vulnerabilities in
Categories of Clones and Non-Cloned Code

Md R. Islam
University of New Orleans, USA

Email: mislam3@uno.edu

Minhaz F. Zibran
University of New Orleans, USA

Email: zibran@cs.uno.edu

Abstract—Code clones are serious code smells. To investigate
bug-proneness of clones as opposed to clone-free source code,
earlier attempts have studied the stability of code clones and
their contributions to program faults. This paper presents a
comparative study on different types of clones and non-cloned
code on the basis of their vulnerabilities, which may lead to
software defects and issues in future. The empirical study along
this new dimension examines source code of 97 software systems
and derives results based on quantitative analysis with statistical
significance. The findings from this work add to our under-
standing of the characteristics and impacts of clones, which can
be useful in clone-aware software development and in devising
techniques for minimizing the negative impacts of code clones.

I. INTRODUCTION

Source code reuse by copy-paste is a common practice that

software developers adopt to increase productivity. Such a

reuse mechanism typically results in duplicate or very similar

code fragments commonly known as code clones. Aside from

such deliberate cloning, unintentional clones are also created

for various reasons under diverse circumstances [25], [27].

Software systems typically have 9%-17% [33] cloned code,

and the proportion is sometimes found to be even 50% [26]

or higher [5].

Despite the few benefits [16] of cloning, code clones are

detrimental in most cases [14], [16], [20]. Code clone is a

notorious code smell (i.e., a symptom indicating source of

future problems) [7], that cause serious problems such as

reduced code quality, code inflation, program faults, security
vulnerabilities, and bugs propagation [14], [32]. Clones are

thus a major contributor to the high maintenance cost for

software systems, and as much as 80% of software costs are

spent on maintenance [12]. Therefore, it is necessary to keep

the number of clones at the minimum and to remove them

from source code by refactoring. However, not all the clones

in a software system are harmful [16], neither it is feasible to

remove all the clones in source code by refactoring [4], [32].

Therefore, we must distinguish the context and characteristics

of clones, which make them malign as opposed to the benign

clones.

Towards this goal, several studies have been performed

in the past to examine or exploit comparative stability of

clones as opposed to non-cloned code [9], [10], [17], [18],

[22], relationships of clones with bug-fixing changes [3], [11],

[13], [14], [15], [19], [24], [29], [31], and the impacts of

clones on program’s changeability [8], [20], [21]. Note that,

code smells are symptoms of poor coding patterns and are

probable sources of future serious problems. While code clone

itself is a notorious code smell [7] other fine grained code

smells, defects and vulnerabilities often hide inside cloned

code. Thus, such “smelly code clones” can be regarded as

bug-prone clones, which are likely to cause serious defects,

and the reuse by copy-pasting of such a bug-prone piece of

code causes multiplication of bug-proneness elsewhere in the

software system.

Earlier attempts [13], [15], [19], [31] to determine bug-

proneness of code clones relied on long-term history of bug

fixing changes preserved in version control system. While such

studies make important contributions, their approaches do not

fit well for proactive clone management, especially at the early

stages of software development process where significantly

long history of bug-fixing changes are not available. Therefore,

to determine bug-proneness of code clones, we choose to apply

static source code analysis techniques that do not require any

bug-fixing history.

This paper presents an empirical study on the relationships

of program vulnerabilities with code clones. Here ‘vulnerabil-
ity’ refers to problems in the source code identified based on

bad coding patterns [7], which lead to bugs, security holes, per-

formance issues, design flaws, and other difficulties. A list of

such vulnerabilities are presented in Table I. A particular piece

of code is considered vulnerable if it contains code smells or

bad coding patterns, and the severity of the vulnerability is

dictated by the severity of existing code smells. In this work,

we address the following three research questions.

RQ1: Are code clones more vulnerable than non-cloned code
or vice versa? — Rahman et al. [24] reported that the great

majority of software defects are not significantly associated

with clones, while Juergens et al. [14] claimed otherwise.

RQ2: Are clones of a certain category relatively more vulner-
able than others? — If a certain type of clones are found to be

more vulnerable, those clones can be high-priority candidates

for removal or careful maintenance.

RQ3: Is there a particular set of vulnerabilities that appear
more frequently in cloned code as opposed to non-cloned
code? — If such a set of vulnerabilities can be identified, the

findings will help software developers staying cautious of such

vulnerabilities while cloning source code. In addition, those

particular set of vulnerabilities can be avoided or removed by

the use of clone refactoring.
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To answer the aforementioned research questions, we con-

duct a quantitative empirical study over 97 open-source soft-

ware systems drawn from diverse application domains. Using

a wide range of metrics and characterization criteria, we carry

out an in-depth analysis on the source code of the systems

with respect to different categories of code clones, non-cloned

code, and a diverse set of vulnerabilities.

II. TERMINOLOGY AND METRICS

In this section, we describe and define the terminologies

and metrics used in our work.

A. Characterizing Terminologies

Our study includes clones at the granularity of syntactic

blocks at different levels of similarities.

Type-1 Clones: Identical pieces of source code with or

without variations in whitespaces (i.e., layout) and comments

are called Type-1 clones [27].

Type-2 Clones: Type-2 clones are syntactically identical code

fragments with variations in the names of identifiers, literals,

types, layout and comments [27].

Type-3 Clones: Code fragments, which exhibit similarities as

of Type-2 clones and also allow further differences such as

additions, deletions or modifications of statements are known

as Type-3 clones [27].

Notice that by the definitions above, Type-2 clones include

Type-1 while Type-3 clones include both Type-1 and Type-2.

Let, T1, T2, and T3 respectively denote the sets of Type-1,

Type-2, and Type-3 clones in a software system. Mathemati-

cally, T1 ⊆ T2 ⊆ T3. Thus, we further define two subsets of

Type-2 and Type-3 clones as follows.

Pure Type-2 Clones: A set of pure Type-2 clones include

only those Type-2 clones that do not exhibit Type-1 similarity.

Mathematically, T p
2 = T2 − T1, where T p

2 denotes the set of

pure Type-2 clones.

Pure Type-3 Clones: A set of pure Type-3 clones include

only those Type-3 clones, which do not exhibit similarities at

the levels of Type-1 or Type-2 clones. Mathematically, T p
3 =

T3 − T2, where T p
3 denotes the set of pure Type-3 clones.

B. Metrics

The most important metrics used in this study are defined

in terms of density of vulnerabilities with respect to (w.r.t.)

syntactic blocks of code (BOC) as well as w.r.t. lines of code

(LOC). Note that only source lines of code are taken into

consideration excluding comments and blank lines.

Density of vulnerabilities w.r.t. BOC in category x clones,

denoted as ∂β
x , is defined as the ratio of the number of

vulnerabilities found in clones of category x and the number of

clones of category x where, category x ∈ {T1, T2, T3, T
p
2 , T

p
3 }.

Mathematically,
∂β
x =

νx
βx

(1)

where νx denotes the number of vulnerabilities found in clones

of category x and βx denotes the total number of clones of

category x.

Density of vulnerabilities w.r.t. BOC in all clones, denoted

as ∂β
c , is defined as the ratio of the number of vulnerabilities

found in all clones and total the number of all the clones.

Mathematically,
∂β
c =

νc
βc

(2)

where νc denotes the number of vulnerabilities found in all

clones and βc denotes the total number of all categories of

clones.

Density of vulnerabilities w.r.t. BOC in non-cloned code,

denoted as ∂β
c̄ , is defined as the ratio of the number of

vulnerabilities found in non-cloned code and the number of

non-cloned blocks of code. Mathematically,

∂β
c̄ =

νc̄
βc̄

(3)

where νc̄ denotes the number of vulnerabilities found in non-

cloned code and βc̄ denotes the total number of non-cloned

blocks of code.

Density of vulnerabilities w.r.t. LOC in category x clones,

denoted as ∂�
x, is defined as the ratio of the number of

vulnerabilities found in clones of category x and the number

of LOC in all the clones of category x where, category

x ∈ {T1, T2, T3, T
p
2 , T

p
3 }. Mathematically,

∂�
x =

νx
�x

(4)

where νx denotes the number of vulnerabilities found in clones

of category x and �x denotes the total number of LOC in

clones of category x.

Density of vulnerabilities w.r.t. LOC in all clones, denoted

as ∂�
c , is defined as the ratio of the number of vulnerabilities

found in all clones and the number of LOC in all the clones.

Mathematically,
∂�
c =

νc
�c

(5)

where νc denotes the number of vulnerabilities found in all

clones and �c denotes the total number of LOC in all clones.

Density of vulnerabilities w.r.t. LOC in non-cloned code,

denoted as ∂�
c̄ , is defined as the ratio of the number of

vulnerabilities found in non-cloned code and the number of

LOC in all non-cloned blocks of code. Mathematically,

∂�
c̄ =

νc̄
�c̄

(6)

where νc̄ denotes the number of vulnerabilities found in non-

cloned code and �c̄ denotes the total number of LOC in non-

cloned blocks of code.

Density of a particular vulnerability v in cloned code,

denoted as dc(v), is calculated by dividing the number of

instances of v found in cloned code by the total number of

LOC in cloned code. Mathematically,

dc(v) =
vc
�c

(7)

where vc denotes the number of instances of vulnerability v
found in cloned code and �c denotes the total number of LOC

across all clones.
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TABLE I
ABRIDGED DESCRIPTION OF MAJOR VULNERABILITIES FOUND IN THE SUBJECT SYSTEMS

Vulnerability Description
LawOfDemeter (LD) Program unit needing too much knowledge about other units.
LocalVariableCouldBeFinal (LVF) Local variable assigned only once but not declared final.
ShortVariable (SV) A field, local, or parameter with a too short name.
OnlyOneReturn (OOR) Method with more than one exit points.
IfStmtsMustUseBraces (ISB) ‘if’ statements without accompanying curly braces.
AssertionsShouldIncludeMessage (AIM) Assertions including no error message.
UselessParentheses (UP) Useless parentheses in code.
IfElseStmtsMustUseBraces (IEB) ‘if-else’ statements without accompanying curly braces.
AvoidInstantiatingObjectsInLoops (AOL) Instantiation of new objects inside loop.
NullAssignment (NA) Assignment of a “null” to a variable (outside of its declaration).
ConfusingTernary (CT) Use of negation within an ‘if’ expression in ‘if-else’ statement.
AvoidLiteralsInIfCondition (ALC) Use of hard coded literals in conditional statements.
MethodShouldUseAnnotation (UA) Missing annotations for methods.
DataflowAnomaly(DA) Local definitions and references to variables on different paths.
ModifiedCyclomaticComplexity (MCC) A variant of Cyclomatic complexity, which treats switch statements as a single decision point.
TooManyMethods (TMM) A class with too many methods.
NPathComplexity (NPC) Too high number of acyclic execution paths through a method.
AvoidCatchingGenericException (ACE) Use of higher level exception in catching low level error conditions.
CommentRequired (CR) Missing required comment for specific language elements.
MethodArgumentCouldBeFinal (MAF) Non-final method argument that is never assigned to.
CommentSize (CS) Dimensions of non-header comments exceeding specified limits.
BeanMembersShouldSerialize (BMS) Class’s member variables not marked as transient, static, or missing accessor methods.
VariableNamingConventions (VNC) Named of final variables not fully capitalized or use of underscores in names of non-final variables.
LongVariable (LV) Too long name for a field, method or local variable.
FieldDeclarationsShouldBeAtStartOfClass (FDC) Class’s member fields not declared at the top of the class.
DefaultPackage (DP) Use of default package private accessibility instead of explicit scoping.
UnusedModifier (UM) Use modifiers in such a place of code which will be ignored by compiler.
RedundantFieldInitializer (RFI) Unnecessary explicit initialization of class’s member fields.
ImmutableField (IMF) Class’s private fields whose values never change once they are initialized but not made final.

Density of a particular vulnerability v in non-cloned code,

denoted as dc̄(v), is calculated by dividing the number of

instances of v found in non-cloned code by the total number

of LOC in non-cloned blocks of code. Mathematically,

dc̄(v) =
vc̄
�c̄

(8)

where vc̄ denotes the number of instances of vulnerability v
found in non-cloned code and �c̄ denotes the total number of

LOC in all non-cloned blocks of code.

III. STUDY SETUP

The procedural steps of our empirical study are summarized

in Figure 1.

A. Subject Systems

Our study investigates the source code of 97 software

systems of the Qualitas Corpus [30], which is a large curated

collection of open source systems of diverse application do-

mains and written in Java.

B. Clone Detection

Using the NiCad [28] clone detector (version 3.5), we

separately detect code clones (with at least five LOC) in each

of the subject systems. The parameters settings of NiCad used

in our study are mentioned in Table II. With these settings,

NiCad detects Type-1, Type-2, and Type-3 clones. Further

details on NiCad’s tuning parameters and their influences

on clone detection can be found elsewhere [28]. Then, we

compute the pure Type-2 and pure Type-3 clones in accordance

with their specifications outlined in Section II.

TABLE II
NICAD SETTINGS FOR CODE CLONE DETECTION

Clone Types NiCad Parameter Value

Type-1 Dissimilarity Threshold 0%
Identifier Renaming No Rename

Type-2 Dissimilarity Threshold 0%
Identifier Renaming Blind Rename

Type-3 Dissimilarity Threshold 30%
Identifier Renaming No Rename

C. Vulnerability Detection

For the detection of vulnerabilities in source code, we

use PMD (version 5.3.2) [23], which applies a static rule-

based approach for source code analysis and identification of

potential vulnerabilities in a software system. For vulnerability

detection, we execute PMD from command line interface,

and feed to it a set of rules, which is the default rule-set

packaged with the Eclipse plugin variant of the tool. All others

parameters of PMD are set to the defaults. Using PMD, we

separately detect vulnerabilities in each of the subject systems

in our study.
IV. ANALYSIS AND FINDINGS

Upon detection of the clones and vulnerabilities, for each

of the subject systems, we identify the co-locations of code

clones and vulnerabilities, distinguish the vulnerabilities lo-

cated in non-cloned portion of code, and compute all the

metrics described in Section II. To verify the statistical sig-

nificance of the results derived from our quantitative analysis,

we also apply the statistical Mann-Whitney-Wilcoxon (MWW)
test [1] with α = 0.05. The non-parametric MWW test does

not require normal distribution of data, and thus it suits well

for our purpose.
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Fig. 1. Procedural Steps of the Empirical Study

Fig. 2. Distribution of Vulnerabilities in Cloned and Non-cloned Code

Fig. 3. Distribution of LOC in Cloned and Non-cloned Code

A. Comparative Vulnerability of Cloned vs. Non-Cloned Code

Figure 2 presents how the total number of vulnerabilities

are distributed in non-cloned code and different types of

clones over all the systems. As seen in Figure 2, 77% of all

vulnerabilities are found in non-cloned source code, whereas

the clones contain only 23% of vulnerabilities.

The box-plot in Figure 4 presents the densities of vulner-

abilities w.r.t. BOC (computed using Equation 1, Equation 2,

and Equation 3) found in non-cloned code and in different

types of clones over all the subject systems. The ‘x’ marks in

the boxes indicate the mean densities over all the systems. As

seen in Figure 4, the density of vulnerabilities (w.r.t. BOC) in

non-cloned blocks is much higher than that in clones.

Indeed, a larger portion of source code is likely to contain

more vulnerabilities than a smaller portion of source code,

Fig. 4. Densities of Vulnerabilities w.r.t. BOC

Fig. 5. Density of Vulnerabilities w.r.t. LOC

which might be a reason why non-cloned code seems to have

more vulnerabilities as observed in Figure 2 and Figure 4.

To verify this possibility, we compute the distribution of

LOC in non-cloned code and different types of clones over

all the systems as presented in Figure 3. Notice that the

distribution of vulnerabilities (Figure 2) is very similar to

the distribution of LOC (Figure 3) in non-cloned code and

different types of clones. The average LOC in cloned and non-

cloned blocks over all the systems are found to be 8.43 and

19.03 respectively. In the subject systems used in our study,

74% of the source code are clone-free over all the systems

as portrayed in Figure 3. Thus, the possibility of influence

of code size (in terms of LOC) on the number or density of

vulnerabilities w.r.t. BOC is found to be true.

We, therefore, perform a deeper investigation using the

densities of vulnerabilities w.r.t. LOC. The box-plot in Figure 5

presents the densities of vulnerabilities w.r.t. LOC (computed

using Equation 4, Equation 5, and Equation 6) found in

non-cloned code and in different types of clones over all

the subject systems. Figure 5 shows that the densities of

vulnerabilities (w.r.t. LOC) in cloned and non-cloned code are

almost equal (with a mean difference of 0.02 only). Thus, it

appears that there is no significant difference in the density of

vulnerabilities w.r.t. LOC in cloned versus non-cloned code.

A MWW test (P = 0.28, P > α) over distribution of densities

of vulnerabilities (w.r.t. LOC) across all the subject systems

also confirms this finding. Therefore, we derive the answer to

the RQ1 as follows:

Ans. to RQ1: Cloned code are NOT more vulnerable than
non-cloned code. Rather, higher number of vulnerabilities can
be found in non-cloned code due to their larger sizes (in terms
of LOC) as compared to cloned code.
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B. Comparative Vulnerability of Different Types of Clones

The distribution of vulnerabilities portrayed in Figure 2

shows that the pure Type-2 clones are found to have the

minimum vulnerabilities whereas the number of vulnerabilities

found in Type-1 clones is slightly higher than that in pure Type-
2 clones. The vulnerabilities found in cloned portion of source

code are found to be dominated by those found in pure Type-3
clones. However, the majority of cloned LOC are also in pure
Type-3 clones as can be seen in Figure 3, which might be a

reason why a higher number of vulnerabilities are found in

clones of this particular category.

The box-plot in Figure 4 indicates that density of vulner-

abilities w.r.t. BOC is higher in Type-1 clones as compared

to pure Type-2 and pure Type-3. MWW tests between the

distributions of vulnerabilities (w.r.t. BOC) in each two of the

three categories of clones also suggest statistical significance

in the differences except for the case of vulnerabilities in pure
Type-2 and pure Type-3 clones. The results of the MWW tests

are presented in Table III.

TABLE III
MWW TESTS OVER DENSITIES OF VULNERABILITIES W.R.T. BOC IN

DIFFERENT CATEGORIES OF CLONES
Clone Types Type-1 Pure Type-2 Pure Type-3

Type-1 - P = 0.0 P = 0.0
Pure Type-2 P = 0.0 - P = 0.7641
Pure Type-3 P = 0.0 P = 0.7641 -

In Figure 5, the differences in the densities of vulnerabilities

w.r.t. LOC in the three categories of clones are relatively

higher, and the density is the highest in Type-1 clones while

lowest in pure Type-3. MWW tests between the distributions of

vulnerabilities (w.r.t. LOC) in each pair of the three categories

of clones also suggest statistical significance in the differences.

The results of the MWW tests are presented in Table IV.

TABLE IV
MWW TESTS OVER DENSITIES OF VULNERABILITIES W.R.T. LOC IN

DIFFERENT CATEGORIES OF CLONES
Clone Types Type-1 Pure Type-2 Pure Type-3

Type-1 - P = 0.0173 P = 0.0
Pure Type-2 P = 0.0173 - P = 0.0
Pure Type-3 P = 0.0 P = 0.0 -

Based on the findings, we now answer the RQ2 as follows:

Ans. to RQ2: Although the clones larger in size (w.r.t LOC)
are more vulnerable than smaller clones, in general, Type-1
clones are the most vulnerable while pure Type-3 clones are
the least vulnerable and pure Type-2 clones fit in between.

C. Relatively Frequent Vulnerabilities

To address the third research question (i.e., RQ3), we

compute the densities of each individual vulnerability sep-

arately in cloned and non-cloned code (over all the subject

systems) using Equation 7 and Equation 8 respectively. Then

we distinguish 20 vulnerabilities, which have the highest

densities in cloned code over all the subject systems. Let

Dc denote the set of these 20 vulnerabilities. Similarly, we

form another set Dc̄ consisting of 20 vulnerabilities having the

highest densities in non-cloned code. By the union of these

TABLE V
VULNERABILITIES DOMINATING IN CLONED AND NON-CLONED CODE

Vulner- Density Ratio High
-ability Clone Non-clone M(v) =

dc(v)
dc̄(v)

Frequency
(v) dc(v) dc̄(v) Area
LD 0.1489 0.10547 1.4118
LVF 0.08561 0.05885 1.4547
SV 0.02258 0.02149 1.0507

OOR 0.03129 0.01625 1.9255
ISB 0.02124 0.01605 1.3234 Both
AIM 0.00968 0.00707 1.3692 clone
UP 0.00822 0.00602 1.3654 and
IEB 0.00472 0.00485 0.9732 non-clone
AOL 0.00428 0.00301 1.4219 code
NA 0.00423 0.00258 1.6395
CT 0.00417 0.00239 1.7448

ALC 0.00406 0.00274 1.4818
UA 0.00389 0.00218 1.7844

DA 0.0563 0.02362 2.3836
MCC 0.01026 0.0013 7.8923 Clone
TMM 0.00421 0.0002 21.0500 code
NPC 0.00398 0.00087 4.5747 only
ACE 0.00389 0.00127 3.0630

CR 0.03638 0.08105 0.4489
MAF 0.04668 0.08102 0.5762
CS 0.00227 0.04542 0.0500

BMS 0.00006 0.02532 0.0024
VNC 0.00277 0.01866 0.1484 Non-clone
LV 0.00309 0.01727 0.1789 code

FDC 0.00002 0.00872 0.0023 only
DP 0.0033 0.00831 0.3971
UM 0.00002 0.00517 0.0039
RFI 0.00004 0.00467 0.0086
IMF 0.00001 0.00444 0.0023

two sets we obtain a set D of 29 vulnerabilities that have

the highest densities across both cloned and non-cloned code.

Mathematically, D = Dc ∪ Dc̄.

Short descriptions of these 29 vulnerabilities are given

in Table I; further elaborations can be found in [23]. The

densities of each of these 29 vulnerabilities in cloned and

non-cloned code are presented in Table V. Note that, these 29

vulnerabilities represent 85% of total vulnerabilities in cloned

code and 89% of the vulnerabilities found in non-cloned code

over all the subject systems. Next, we want to partition these

vulnerabilities into three clusters: one with vulnerabilities

dominating in cloned code, another with those dominating in

non-cloned code and a third cluster with vulnerabilities, which

almost equally appear in both cloned and non-cloned code.

Cluster Analysis: For the purpose of aforementioned parti-

tioning, we conduct a clustering analysis on the densities of

these vulnerabilities in cloned and non-cloned code. For each

v of these 29 vulnerabilities, we compute a ratio M(v) as

follows:
M(v) =

dc(v)

dc̄(v)
, where, v ∈ D (9)

The ratios computed for each of the 29 vulnerabilities are

presented in the second column from the right in Table V.

Notice that, for a particular vulnerability v, the ratio M(v)
close to 1.0 indicates that the vulnerability v almost equally

appears in both cloned and non-cloned code. If M(v) is much

higher than 1.0, the appearance of vulnerability v can be

characterized to have dominated in cloned code. Similarly,

M(v) being much lower than 1.0 implies that the vulnerability

v appears more in non-cloned code. However, a threshold

scheme seems required to determine when the value of M(v)
can be considered significantly close to or distant from 1.0.

12



Fig. 6. Hierarchical Agglomerative Clustering of Vulnerabilities

Instead of setting an arbitrary threshold by ourselves, we

apply unsupervised Hierarchical Agglomerative Clustering [6]

for partitioning the values ofM(v). The dendrogram produced

from this statistical clustering is presented in Figure 6. In the

dendrogram, three major clusters are evident, two marked with

dotted rectangles and the third left unmarked in the middle.

The values of M(v) for the vulnerabilities in the middle

cluster range between 0.97 and 1.92. This middle cluster

includes a set of those vulnerabilities, which equally appear in

both cloned and non-cloned codes. Let Gb denote this cluster.

For all of the five vulnerabilities (i.e., MCC, NPC, DA,

ACE, and TMM) in the right-most cluster M(v) ≥ 2.38,

which indicates that these vulnerabilities appear more fre-

quently in cloned code compared to their presence in non-

cloned clone. Let Gc denote the cluster of these vulnerabilities.

The left most cluster, denoted as, Gc̄, includes the vulnerabil-

ities with M(v) < 0.97, and they are frequently found in

non-cloned code. The right-most column in Table V labels

the vulnerabilities in accordance with how they are clustered

here.

Statistical Significance: For each of the three clusters of

vulnerabilities, we separately conduct MWW tests between

the densities of those vulnerabilities in cloned and non-cloned

code to determine the statistical significance of the difference

in their existence in those two categories (i.e., cloned and non-

cloned) of code. The results of the separate MWW tests over

each of the clusters are presented in Table VI.

TABLE VI
MWW TESTS BETWEEN DENSITY-DISTRIBUTIONS IN CLONED AND

NON-CLONED CODE FOR VULNERABILITIES OF EACH CLUSTER

Cluster Gc Gc̄ Gb

P -values 0.0474 0.0024 0.3575

The P -values in Table VI indicate statistical significance

in the differences of density-distribution in cloned and non-

cloned code for vulnerabilities in cluster Gc and Gc̄, but not for

those in cluster Gb. Thus, our clustering of the vulnerabilities

is confirmed accurate with statistical significance. Now, we

answer the research question RQ3 as follows:

Ans. to RQ3: There are distinct sets of vulnerabilities (as
characterized in Table V), which frequently appear in cloned
code or non-cloned code, while many other vulnerabilities are
found to be equally present in both cloned and non-cloned
code.

V. THREATS TO VALIDITY

In this section, we discuss possible threats to the validity of

our study and how we have mitigated their effects.

Construct Validity: In the detection of vulnerabilities with

PMD, we used its default settings and relied on the set of rules,

which came with the Eclipse plug-in variant of the tool. Those

set of rules might not have covered all possible vulnerabilities,

and we considered each vulnerability equally important. In

the selection of the two dominant sets of vulnerabilities

(Section IV-C), we picked top 20 vulnerabilities for each set

having the highest densities in cloned and non-cloned code.

Although those chosen vulnerabilities cover more than 80%

of all distinct vulnerabilities and more than 85% instances of

vulnerabilities found in all the systems, this choice may still

be considered as a threat to validity of this work.

Internal Validity: The clone detector, NiCad, used in our

study, is reported to be very accurate in clone detection [28],

and we have carefully set NiCad’s parameters. The tool,

PMD, used in our work for vulnerability detection, is also

known effective and widely used in both industry and research

community. However, 15 out of 112 systems in the Qualitus

Corpus [30] were failed to be processed by either NiCad or

PMD. Those 15 systems are excluded from our study. More-

over, we manually verified the correctness of computations

for all the metrics used in our work. Thus, we develop high

confidence in the internal validity of this study.

External Validity: Although our study includes a large num-

ber of subject systems, all the systems are open-source and

written in Java. Thus the findings from this work may not be

generalizable for industrial systems and source code written

in languages other than Java.

Reliability: The methodology of this study including the

procedure for data collection and analysis is documented in

this paper. The subject systems being open-source, are freely

accessible while the tools NiCad and PMD are also available

online. Therefore, it should be possible to replicate the study.

VI. RELATED WORK

It is often believed that inconsistent changes to clones cause

program faults and frequent changes may lead to significant

instances of inconsistent changes [3], [14]. Thus, to develop an

understanding on the fault-proneness of code clones, studies

have been conducted to examine the stability (in terms of

frequency and sizes of changes) and inconsistent changes in

evolving code clones.

Juergens et al. [14] reported that inconsistent changes to

clones are very frequent and a significant number of faults

are induced by such inconsistent changes. Barbour et al. [3]

suggested that late propagations due to inconsistent changes

are prone to introduce software defects. While Lozano and

Wermelinger [20] suggested that having a clone may increase

the maintenance effort for changing a method, Hotta et al. [10]

reported code clones not to have any negative impact on

software changeability. Lozano et al. [21] reported that a vast

majority of methods experience larger and frequent changes

when they contain cloned code. Mondal et al. [22] also

reported code clones to be less stable. However, opposite

results are found from the other studies [2], [8], [9], [17].
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Attempts are also made to explore fault-proneness of clones

by relating them with bug-fixing changes obtained from

commit history. Such a study was conducted by Jingyue et

al. [19], who reported that only 4% of the bugs were found

in duplicated code. In a similar study, Rahman et al. [24]

also observed that majority of bugs were not significantly

associated with clones. These findings contradict with those

of Juergens et al. [14] and Barbour et al. [3].

The contradictory results from the earlier studies imply

the necessity of further comparative investigations from a

different dimension, which is exactly what we have done in

this study. We have carried out a comparative investigation

of vulnerabilities in clones and non-coned code, which was

missing in the literature. In addition, the comparative analysis

of vulnerabilities in Type-1, pure Type-2, and pure Type-3
clones is another unique aspect of our work.

VII. CONCLUSION

In this paper, we have presented a quantitative empirical

study on the vulnerabilities (in terms of bad coding patterns)

in different types of code clones and non-cloned code in 97

open-source software systems written in Java. To the best

of our knowledge, no other work in the past conducted a

comparative study of such vulnerabilities in cloned and non-

cloned as done in our work. In our study, we have found no

significant differences between the densities of vulnerabilities

in code clones and clone-free source code. Surprisingly, among

the three categories (i.e., Type-1, pure Type-2, and pure Type-3)

of clones studied in our work, Type-1 clones are found to be the

most vulnerable whereas pure Type-3 are the least. In addition,

our study identifies a set of five vulnerabilities that appear

more frequently in cloned code compared to non-cloned code.

Another set of 11 vulnerabilities are also distinguished, which

are more frequently found in non-cloned code as opposed to

cloned code. The results are validated in the light of statistical

significance.

The findings from this study significantly advance our

understanding of the characteristics, impacts, and implications

of code clones in software systems. These findings can help

in identifying problematic clones, which demand extra care

and those vulnerabilities about which the developers need to

be particularly cautious about while reusing code by cloning.

For example, since Type-1 clones are found to be the most

vulnerable, and that refactoring of Type-1 clones can be

expected to be easier (due to absence of much differences

among them) than refactoring other types of clones, we argue

that this particular type of clones should be removed from

source code by frequent refactoring.
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